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Introduction
Lipophagy is a particular kind of autophagy. It uses 
lysosomal acid lipases to selectively destroy intracellular 
cholesterol and triglycerides (TGs) that are stored in lipid 
droplets (LDs). The proteins in LD membranes are sighted 
and then are concealed by microtubule‑associated protein 
1 light chain 3 II (LC3 II) for formation of autophagosomes 
(APs), which later fuses with lysosomes to form 
autolysosomes (ALs). Eventually, β‑oxidation takes place 
and the engulfed TG‑rich lipid droplets decompose into 
free	 fatty	acids	 to	produce	 adenosine	 triphosphate	 in	
mitochondria.1‑3 Later, lipophagy hydrolyses cholesterol 
ester-rich	LDs	to	free	cholesterol	for	efflux,	mediated	by	
ATP-binding	 cassette	 transporter	A1	 (ABCA1).4 Hence 
lipophagy is important in regulating intracellular lipid 
accumulation,	cholesterol	efflux,	and	supporting	energy	
homeostasis. However, a defective lipophagy might lead 
to	tissue	lipid	build-up	like	in	atherosclerosis	and	fatty	
liver diseases.5‑7 

Atherosclerosis is caused due to lipid accumulation 
in arterial wall and is a progressive disease.8 Underlying 
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mechanisms of atherosclerosis remain obscure despite 
of known risk factors. So, several studies have come up 
related to the disease: endothelial dysfunction, lipid 
metabolism, cell apoptosis, genetic and epigenetic factors 
and oxidative stress.9‑13 Autophagy impairment is noticed 
in both human and animal atherosclerotic plaques.14,15 
Recent reports have stated that lipophagy damage occurs 
in foam cells, so lipophagy is linked to atherosclerosis.16,17 
So	it	is	difficult	to	conclude	whether	lipophagy	is	a	cause	
or an outcome of atherosclerosis. 

This review mentions the mechanism and function 
of lipophagy. It outlines the damage of autophagic 
degradation of lipid, taking place in the atherosclerotic 
lesions.	Moreover,	the	effect	of	deficiency	in	Lipophagy	
on atherogenic procedure like, macrophage lipid 
accumulation, VSMCs proliferation and movement 
and vascular EC dysfunction have also been described. 
Additionally, we also have focused on advanced methods 
to reverse lipid metabolism disorders via the regulation 
of lipophagy in treatment of atherosclerotic disease.18

Mechanism of Lipophagy
Autophagy forms and matures certain double membrane 
structures like phagophores, ALys and Aps. The 
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formation of an isolation membrane is a signal of the 
beginning of autophagy. The elongation and closure of 
phagophores form APs and then fuse with lysosomes, 
resulting in ALys. Here lysosomal hydrolytic enzymes 
are used to reduce the engulfed cargoes.19,20 Autophagy is 
regulated by numerous autophagy‑related genes (ATGs). 
So far more than 40 ATGs have been discovered in yeast, 
the majority of which are mammalian homologs.21 The 
formation of phagophores and APs are caused by the 
interaction of these ATGs and other components such 
as unc‑51‑like autophagy‑activating kinase 1 (ULK1).20

Lipophagy is a selective‑autophagy in which APs 
separate the LDs and get degraded using lysosomes 
(Fig	 1).	The	first	well-defined	 lipophagic	method	was	
cultured in hepatocytes and was explained by Singh et 
al.22 According to the authors, autophagy is induced by 
starvation and promotes the degradation of LDs into 
free	fatty	acid	(FFAs)	in	the	liver.	However,	this	practice	
is disturbed by autophagy inhibitor, 3‑methyladenine 
(3‑MA) or ATG5 and ATG7 knockdown, causing a 
significant decline in the breakdown of LDs. Thus, 
defective lipophagy blocks LD clearance leading to 
lipid accumulation.2,23 However, current studies claim 
that lipophagy can also occur in non‑liver tissue and 
cells, primarily the heart, vascular endothelial cells, 
macrophages, and others.24‑26

Morphology of lipophagy
Morphologically, LDs can recognize the type of 
lipophagy used, by determining how selective contents 
are being engulfed during the autophagic process. In 
most cells, the LDs are large subcellular structures with 
probable diameters of 0.1 to 100 µm. LDs are primarily 
larger than lysosomal cells in mammalian cells (0.1‑1 µm 
in diameter). However, yeast vacuoles like lysosomes are 

generally larger than yeast LDs. Recent studies indicate 
that	 LDs	make	 contact	with	 vacuoles,	 specifically	 at	
vacuolar junctions/ER; which contradicts previous 
studies that suggested that LDs entered the vacuoles.27 
In higher eukaryotic cells, LD is formed on double 
membrane	phagophores	and	they	pinch	off	portions	of	
LD membrane with neutral lipid content. This process 
is gradual. 

Regulation of Lipophagy

Significance of mammalian target of rapamycin
The mammalian target of rapamycin (mTOR) is an 
important negative autophagy regulator activated by 
PI3K/Akt/signaling.28 mTOR exists in two complexes: 
mTOR complex 1 (mTORC1) and mTORC2. mTORC1 
affects	 lipophagy	by	 inhibiting	phagophore	 initiation	
and formation of AP. Reports suggest that MTORC1 
activation stimulates phosphorylation of UNC‑51‑
like autophagy that activates kinase1/2 (ULK1/2) and 
ATG13. This impedes the formation of ULK1 complex 
(including FIP200, ATG101 and ATG13).29,30 Moreover, 
mTORC1 restricts lipophagy using phosphorylation 
of	 the	 transcription	 factor	 –EB	 (TFEB)	 and	ATG14.31,32 
However, phosphorylation of ULK1 at Ser 317 and Ser 
777 causes initiation of AMP‑activated protein kinase 
(AMPK)	which	poses	reversed	effect	on	the	inhibition	of	
mTOR in lipophagy (Fig 1).33 Earlier studies suggested 
that activation of P13K‑Akt‑mTOR causes impairment 
of ox‑LDL‑induced macrophage lipophagy and foam 
cell formation.34 However, current studies discovered 
that	AMPK	activation	 inhibits	 the	 effect	 of	mTOR	on	
macrophage lipophagy.35

Farnesoid X receptor/cAMP response element-binding 
protein axis signaling in lipophagy 
Regulation of lipophagy occurs by two transcriptional 
regulators: cAMP response element‑binding protein 
(CREB)	 and	Farnesoid	X	 receptor.	 Lipophagy	 is	 seen	
to	 be	 regulated	 by	 FXR-CREB	 signaling.36	 CREB	
improves lipophagy by increasing autophagic gene 
expression	like	ATG7	and	ULk1	by	stimulating	CREB-
regulated transcription co‑activator 2 (CRTC2) (Fig 1). 

Nonetheless,	 eliminating	 the	 enhancement	 of	CREB-
mediated	 lipophagy	 by	 activating	 FXR	 can	 stop	 the	
production	of	functional	REB-CRTC2	complex.	Moreover,	
reversing	 the	 inhibitory	effect	of	FXR	on	 lipophagy	 is	
possible by activation of PPARα.37,38	 Thus	FXR-CREB	
signaling	is	a	significant	way	to	regulate	lipophagy.

Fig 1: Mechanism of Lipophagy
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Role of PLIN protein family in lipophagy
PLINs family proteins are surface proteins located 
on LDs and serve as gatekeepers. Their degradation 
is essential for lipophagy/lipolysis.39 This family 
consists of five members, PLIN 1‑5 which serve in 
lipophagy as regulators by binding lipase to LDs. It 
is	 confirmed	that	PLIN2	and	PLIN3	can	be	selectively	
recognized by chaperone‑mediated autophagy (CMA) 
to degrade, transferring the LDs towards lysosomes 
for CMA clearance.40 Accumulation of LDs inside the 
cells	 is	 caused	by	 inhibition	of	CMA,	 confirming	 that	
degradation of PLIN2 and PLIN3 occurs before the 
commencement of lipophagy. According to recent data 
analysis, PLIN2 interacts with HSP70 thus activating 
AMPK signaling and involving lipophagy regulation.41 
Thus,	this	data	confirms	that	PLIN	s	family	proteins	are	
vital contributors for the regulation of lipophagy. 

 Receptor proteins in lipophagy 
Various selective autophagy receptors might also 
function as LD receptors. Some of them are nuclear 
dot protein 5kDa (NDP52), Huntingtin, optineurin, 
SQSTM1/p62, out of which Huntingtin is responsible 
for recognizing and degrading various organelles like 
mitochondria and LDs. Surprisingly cells possessing the 
mutation Huntingtin repossess no cargo and show large 
empty APs. Huntingtin acts as a lipophagic receptor.42 
Moreover, a mutation in Huntingtin causes excessive LD 
accumulation in cells. According to reports LC3 binds 
with cardiolipin and phospholipid.43 Hence, we assume 
that LC3 might directly identify LDs; this partly supports 
that ATGL promotes LDs degradation by binding to LC3. 

Transcriptional regulation 
According to current evidence, transcription factors like 
transcription	 factor	EB	 (TFEB),44 transcription factors 
E3 (TFE3)45 and forkhead homeobox type protein O1 
(FoxO1)46 are important factors in the regulation of 
lipophagy.	As	per	the	report	by	Settembre	et al., expression 
of ATGs and lysosomal gene can be increased by 
lipophagic	activity	and	lipophagy	via	TFEB.47,48 Moreover 
up‑regulation of peroxisome proliferator‑activated 
receptor‑γ coactivator‑1 alpha (PGC‑1α) expression 
enhances	LDs	degradation	which	TFEB	promotes.	TFE3	
acts	in	a	cell-specific	manner	during	lipid	metabolism	and	
the	hyper-expression	of	TFE3	in	hepatocytes	amplifies	
lipophagy and upgrades liver steatosis.45 Obesity might 
be caused due to overexpression of adipocytes.49	Besides,	
several other transcription factors might help in the 
regulation of lipophagy like FoxO1 causes lipophagy 

using up‑regulation of expression in autophagy gene 
ATG14 and lysosomal acid lipase (LAL) in adipocytes.46 
Thus, transcription factors are significant in the 
regulation of lipophagy. 

Effect of Lipophagy on Atherosclerosis
The accumulation of excessive lipid in the arterial walls 
causes atherosclerosis. Injury in vascular endothelial 
cells triggers atherogenic processes such as monocyte 
infiltration	and	differentiation,	VSMC	proliferation	and	
movement.50‑52	Infiltrated	monocytes	form	macrophages	
and	engulf	large	modified	lipids	and	LDL.	These	excess	
lipoproteins and lipid molecules within macrophages get 
stored as LDs which later form foam cells; these develop 
in atherosclerosis.53 LDs in these foam cells contain 
cholesterol ester and free cholesterol. Thus ceasing 
foam cell production and atherosclerosis development 
occurs	due	 to	LDs	degeneration	and	cholesterol	efflux	
from the cells. According to reports by Ouimet et al. 
autophagic degradation restricts lipid accumulation 
during lipophagy, thus preventing the occurrence of 
atherosclerosis.54 Hence, impaired lipophagy might lead 
to	excess	lipid	build-up,	leading	to	fatty	liver	diseases	and	
atherosclerosis.55 Nonetheless, underlying lipophagic 
mechanisms in atherosclerosis are unclear.
This	part	mainly	focuses	on	influence	of	lipophagy	

on injured endothelial cell, VSMCs migration and 
proliferation, and macrophage lipid build‑up. These 
factors can be potential causes in atherosclerosis as they 
are connected with the development of atherosclerosis.

Lipophagy in vascular endothelial cells
Vascular	endothelial	cells	form	single	layer	of	flat	cells	
in the interior of blood vessels, which participate in 
homeostasis. Physiologically, these maintain structure 
of vessels to control the transport of substances across 
blood walls, to regulate vascular tone and produce and 
secrete vasoactive substances. Other characteristics of 
these	cells	are	cell	adhesion,	 immunity,	 inflammation,	
cell signal transduction and so on.56,57 Certain elements 
like hyperglycemia and hyperlipidemia cause blood 
monocyte recruitment, adhesion and infiltration in 
damaged arterial intima, triggering assimilation of 
modified	macrophagial	lipids	to	produce	foam	cells	and	
induce VSMC proliferation and migration, which triggers 
atherogenesis.58 Defective VEC in athero‑prone are can 
cause lipid amassing due to direct uptake of excess 
cholesterol‑rich lipoprotein, causing the formation of 
foam cells.53,59

Atherogenesis begins with endothelial cell injury. The 
function of autophagy is self‑protection against numerous 
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detrimental agents. So, in case of damage, endothelial 
cells	 attempt	 to	prevent	 from	being	harmed.60,61 The 
impaired autophagy causes cell death, thus damaging the 
integrity of endothelium. However, a mechanism for the 
regulation of for autophagy of endothelial cells is unclear. 
Hence advanced knowledge regarding mechanisms 
underlying endothelial cell injury might be useful for 
therapeutic interventions for atherosclerosis.

Autophagy in vascular endothelial cell is vital in 
survival and functions. Activation of autophagy shields 
endothelial cells against damage by advanced glycation 
end products (AGEs) and ox‑LDL.62‑64 These regulate 
apoptosis	 of	 signal-regulating	 kinase	 1	 (ASK1)/JNK,	
silent mating type information regulation 2 homolog 1/
FoxO1 pathways and mammalian target mTORC1/ULK1 
65.	Moreover,	shear	stress	in	arterial	wall	is	significant	
for regulating autophagy in endothelial cells 66. High 
shear stress has been observed to provide protective 
autophagy in vascular endothelial cells,67,68 whereas low‑
stress results in activating mTOR pathway that causes 
autophagy inhibition.60 Autophagy also plays a vital 
role in endothelial eNOS expression, arterial aging and 
thrombosis.61 A current study claims that autophagy is 
also visible in ECs atherosclerotic lesions. Vion A‑C et 
al. later elucidated that adequate endothelial autophagy 
prevents senescence, inflammation and apoptosis, 
thus preventing atherogenesis.60 However, excessive 
autophagy might cause plaque instability as a result of 
autophagic cell death of vascular endothelial cells.69,70 
This concludes that regulating endothelial autophagy 
could	be	effective	in	ameliorating	atherosclerosis.

Currently, lipophagy mainly targets excessive 
accumulation of LDs comprising of cholesterol esters 
in	 vascular	 endothelium,	 causing	 inflammation	 and	
stress in the endoplasmic reticulum (ER) leading to 
endothelial dysfunction and injury.59,71 Lipophagy 
promotes the degradation of LDs, thus maintaining 
a protective mechanism for endothelial survival 
and optimizing accurate functions (Fig 2). This is 
evident as the epigallocatechin gallate (EGCG) reduces 
intracellular lipid accumulation in aortic endothelial 
cells by establishing co‑localization of LDs and ALs.24 
This suggests that decreasing lipid accumulation could 
restrain lipotoxicity in vascular endothelial cells by 
inducing the degradation of LDs n lipophagy.

Macrophage-derived foam cell formation and lipophagy
In the process of atherosclerosis pathogenesis, monocyte‑
derived macrophages play vital roles like initiation, 
evolution and plague rupture.72 Excessive uptake of 
modified	lipids	like	ox-LDL	and	ac-LDL	by	macrophages	

stimulates	atherogenesis.	Deficiency	in	cholesterol	efflux	
and lipophagy add to build‑up of cholesterol‑rich LDs in 
these cells which are then called macrophage‑derived 
foam cells and are major factors for atherosclerotic 
lesions.17 LD‑rich macrophages promote atherosclerosis 
progression and cleavage of plague by inducing 
inflammatory	responses	 in	the	vessels.73 Macrophages 
are	classified	as	M1	and	M2	phenotypes	based	on	their	
prompt inflammatory response. M1 phenotype is a 
pro-inflammatory	response	in	advanced	atherosclerotic	
plaques	whereas	M2	phenotype	is	an	anti-inflammatory	
response in early‑stage atherosclerotic lesions.74

Upcoming reports claim that lipophagy facilitates 
LD degradation causing cholesterol eff lux from  
macrophages.5,17,25 Some evidences and mechanisms of 
lipophagy in formation of macrophage derived foam 
cell have been discussed in the following context (Fig 3).

As per the current reports, a major role of lipophagy 
has	been	spotted	in	the	accumulation	ofmacrophages.18,54 

Improved response to lipid treatment has been detected 
by macrophage lipophagy in both in vivo and in vitro 
conditions.5,25	Lipophagy	flux	was	gravely	hampered	due	
to	altercations	in	Atg5,	causing	ineffective	degradation	
of LDs, forming the foam cells.75 Another analysis 
claimed that in mice fed with a high‑fat diet for a short 
term showed lipophagy whereas excessive accumulation 
of LDs and lipid metabolic ailments were visible in 
those with long‑term input.76 Thus we can conclude 
that degradation of lipids occurs under lipophagy but 
the existence of prolonged high‑fat input can hamper 
lipophagy.

Earlier reports showed that high‑level ox‑LDL (100 
µg/mL) elevated accumulation of lipid in macrophage 
cells by PΙ3K‑Akt‑mTOR signaling and decreased 
co‑localization of LDs with LC3‑ΙΙ.34 Autophagy 

Fig 2: Mechanism of endothelial cell lipophagy in atherosclerosis
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activators like rapamycin and nicotinate‑curcumin 
can	 reverse	 the	above-mentioned	effects	of	ox-LDL	on	
macrophages. Programmed cell death protein 4 (PDCD4) 
poses	a	negative	effect	of	lipophagy	in	macrophages	as	
mentioned in an analysis by Wang L et al. According 
to their report intracellular LD conglomeration and 
foam cell formation can be reduced by knockdown of 
PDCD4, which might promote macrophage lipophagy 
using up‑regulation of ATG5.77 The outcomes suggest 
that inhibition of ATG5‑mediated lipophagy accelerates 
the formation of macrophage foam cells.78 So, PDCD4 
could be a potential therapeutic target to prevent and 
treat atherosclerosis. 

Toll‑interacting protein (Tollip) regulates macrophage 
lipophagy that helps in atherogenesis as per the report 
by Chen et al.5 As per the study, impaired lipophagy, 
distended	 atherosclerotic	plaques	 and	 amplified	LDs	
accumulation	in	macrophages	is	visible	due	to	deficiency	
in Tollip. Thus, lipophagy is accounts for the degradation 
and clearance of excess lipid in macrophages. This helps 
regulate macrophage lipophagy and facilitates cholesterol 
efflux,	thus	helping	treat	atherosclerotic	diseases.	

Lipophagy in vascular smooth muscle cells
Vascular smooth muscle cells (VSMC) conduct 
phenotypic switching from contractile to synthetic or 
macrophage-like	phenotypes	thus	hold	a	significant	role	
in the development of atherosclerosis.79 Several vascular 
physiological and pathophysiological processes like 
repairing vessel injury, development of atherosclerosis, 
vascular remodeling, embryonic angiogenesis etc. 
requires Phenotypic shift in vascular smooth muscle 
cells.80,81 VSMC‑derived foam cells are the major source 
of foam cells in atherosclerotic lesions (approx. 50% 
in human plaques) and are formed due to the uptake 

of excess lipid content by macrophage‑like VSMC.82,83 
Migration and proliferation of VSMCs can occur as 
a result of the phenotypic switch; this promotes the 
advancement of atherosclerosis. Death of excess VSMC 
in	 necrotic	 core	 formation	 and	fibrous	 cap	 thinning	
helps to maintain plaque stability.84 Hence VSMCs shift 
to pro‑atherosclerotic phenotype thus play a vital role 
in atherosclerosis. 

Various stimuli help in achieving a pro‑atherosclerotic 
switch in VSMC phenotype; some of these stimuli include 
oxidized lipids, metabolic stress, growth factors, reactive 
oxygen species and cytokines. These factors eventually 
lead to autophagy in VSMCs, declaring that phenotypic 
switch in VSMCs includes a major role of autophagy 
in VSMCs.85 Thus, we can infer that platelet‑derived 
growth factors promote VSMC autophagy and causes 
synthetic VSMC phenotype by increasing synthetic 
markers and reducing contractile protein expression.86 

VSMC viability can be determined by autophagy. 
Mostly, VSMC survival can be obtained by appropriate 
autophagy but results like apoptosis and senescence can 
occur as a result of abnormal autophagy.87 Ox‑LDL and 
4‑hydroxynonenal (a lipid peroxidation product) induce 
a defensive mechanism against VSMC apoptosis. Current 
studies suggest that VSMC senescence and atherogenesis 
can	occur	due	too	deficient	VSMC	autophagy.88 Thus we 
can draw an inference that VSMC autophagy is vital in 
sustaining normal vascular function and securing the 
arterial wall against atherosclerosis.

Recent reports show that lipophagy protects against 
VSMC‑derived foam cell formation and atherosclerotic 
development. Moreover, accumulation of LDs and foam 
cell formation occurs as a result of activation of phenotypic 
switching	of	VSMCs,	causing	engulfing	of	lipid.	Defective	
lipophagy leads to foam cell formation and could hamper 
lipid metabolism in VSMCs (Fig 4). Earlier studies have 
mentioned that ox‑LDL endorses VSMC‑derived foam 
cell production by inhibiting lipophagy which is visible 
through reduced co‑localization LDs with LC3 and 
enhanced LD accumulation.16

Preventing and treating atherosclerosis by lipophagy
In addition to the information given previously in the 
review, we can say that lipophagy is a potential factor in 
preventing and treating patients with atherosclerosis. 
Several pharmacological agents have been discovered to 
regulate lipophagy, like mTOR inhibitor rapamycin and 
its derivatives (rapalogs) help promote lipid autophagic 
degradation	and	cholesterol	efflux	and	reduce	vascular	
endothelial cell damage.92 Cholesterol‑lowering agents 

Fig 3: Mechanism of atherosclerosis in macrophage
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inhibit the mTOR pathway thus promoting autophagy. 
Lipophagy can also be inhibited by proprotein convertase 
subtilisin/kexin type 9 (PCSk9) via facilitating AKT/mTOR 
signaling. A mechanism involving PCSK9 inhibitors 
helps curtail low‑density lipoprotein cholesterol level 
via inhibiting mTOR pathway.93

As mentioned earlier, lipophagy inducing drugs like 
raplogs and rapamycin, PCSK9 and statins facilitate 
cholesterol	efflux	and	lipid	degradation	thus	preventing	
atherosclerotic	diseases.	But	clinical	drugs	that	peculiarly	
propose lipophagic modulation have not yet been 
discovered	and	 this	 absence	of	precision	affects	 their	
potential	 clinical	 benefits.	Moreover,	 the	 inadequacy	
of biomarkers that detect lipophagic activity is a major 
shortfall	in	assessing	the	effects	of	lipophagy-inducing	
drugs.

Conclusion 
Atherosclerosis occurs due to excess accumulation of 
foam cells (in form of cholesterol‑rich LDs) in the arteries, 
marking it as a progressive disease. Recent reports, 
lipophagy mediated LDs degradation helps maintain 
lipid accumulation and prevent atherosclerosis.5,17,25 

Lipophagic and autophagic depletion is noticed with 
growing age which might ultimately lead to LDs build‑up 
and if worse, can cause atherosclerosis. Lipophagy is vital 
for VSMC phenotypic shift and has a major role in EC 
injury. So regulating lipophagy in cells is a major way 
for treating atherosclerosis. 

Though the benefit of lipophagy regulation for 
treatment of atherosclerosis is supported by many 
evidences yet some queries are left unanswered before 
its actual application. (1) Sometimes, Activation of 
autophagy	can	also	trigger	inflammatory	reactions.94,95(2) 
Alterations of atherosclerotic cell autophagy during 
atherosclerosis in animals should be understood to 

detect	 the	 effect	 of	 cell	 lipophagy	on	 atherosclerosis	
pathogenesis. This could be done by cross‑breeding mice 
with atherosclerosis having ATGs knockout. (3) There is 
a controversy regarding neutral lipolysis and lipophagy; 
can improvement in lipophagy lead to inhibition of 
neutral lipolysis. (4) Transportation of free cholesterol 
during	LD	degradation	should	be	done	through	ABCA1,	
which	 could	prevent	 re-esterification	 from	promoting	
macrophage foam cell formation. (5) More advanced 
studies on lipophagy in VAMCs and ECs is required for 
better	understanding.	Understanding	 the	mechanisms	
of lipophagy perturbations during this disease helps in 
recognizing its ultimate potential as a new therapeutic 
target for the treatment of atherosclerosis.
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