Effects of Lipophagy on Atherosclerosis

Main Article Content

Manish Juneja
Pankaj Raut
Milind Lohkare
Harshawardhan Ramteke
Vaishnavi Walke
Sakshi Bhatia

Abstract

An excess build-up of lipids in the arterial wall might result into Atherosclerosis. Lipophagy is the autophagic degradation of lipids that regulates the lipid metabolism in various kinds of cells. Lipophagy replaces intracellular lipid which makes it vital for development and progression of atherosclerosis. This review focuses on advances in lipid metabolism through lipophagy. The role of lipophagy in vascular endothelial cell injury, macrophage lipid accumulation and vascular smooth muscle cells phenotypic shift has been explained by specifying the lipophagy– atherosclerosis relationship.  Novel therapeutic choices can be discovered by understanding the significance of lipophagy in these processes which could be a breakthrough in treatment of atherosclerosis. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Juneja , M. ., Raut, P. ., Lohkare, M. ., Ramteke, H., Walke, V., & Bhatia, S. (2023). Effects of Lipophagy on Atherosclerosis. Central India Journal of Medical Research, 2(01), 17–25. https://doi.org/10.58999/cijmr.v2i01.44
Section
Review Articles

References

Grynberg A, Demaison L. Fatty acid oxidation in the heart. J Cardiovasc Pharmacol. 1996;28 Suppl 1:S11-S17. doi:10.1097/00005344-199600003-00003

Leverve X, Batandier C, Fontaine E. Choosing the right substrate. Novartis Found Symp. 2007;280:108-164.

Settembre C, Ballabio A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol. 2014;24(12):743-750. doi:10.1016/j.tcb.2014.06.006

Kruit JK, Kremer PH, Dai L, et al. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia. 2010;53(6):1110-1119. doi:10.1007/s00125-010-1691-2

Schulze RJ, McNiven MA. Lipid Droplet Formation and Lipophagy in Fatty Liver Disease. Semin Liver Dis. 2019;39(3):283-290. doi:10.1055/s-0039-1685524

Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013;20(1):3-11. doi:10.1038/cdd.2012.63

Zhou K, Yao P, He J, Zhao H. Lipophagy in nonliver tissues and some related diseases: Pathogenic and therapeutic implications. J Cell Physiol. 2019;234(6):7938-7947. doi:10.1002/jcp.27988

Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233-241. doi:10.1038/35025203

Scioli MG, Storti G, D'Amico F, et al. Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med. 2020;9(6):1995. Published 2020 Jun 25. doi:10.3390/jcm9061995

Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-636. doi:10.1161/CIRCRESAHA.115.306301

Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013;14(11):21525-21550. Published 2013 Oct 30. doi:10.3390/ijms141121525

Opdebeeck B, D'Haese PC, Verhulst A. Molecular and Cellular Mechanisms that Induce Arterial Calcification by Indoxyl Sulfate and P-Cresyl Sulfate. Toxins (Basel). 2020;12(1):58. Published 2020 Jan 19. doi:10.3390/toxins12010058

Luchetti F, Canonico B, Cesarini E, et al. 7-Ketocholesterol and 5,6-secosterol induce human endothelial cell dysfunction by differential mechanisms. Steroids. 2015;99(Pt B):204-211. doi:10.1016/j.steroids.2015.02.008

Sergin I, Razani B. Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab. 2014;25(5):225-234. doi:10.1016/j.tem.2014.03.010

Qiao L, Ma J, Zhang Z, et al. Deficient Chaperone-Mediated Autophagy Promotes Inflammation and Atherosclerosis. Circ Res. 2021;129(12):1141-1157. doi:10.1161/CIRCRESAHA.121.318908

Robichaud S, Fairman G, Vijithakumar V, et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 2021;17(11):3671-3689. doi:10.1080/15548627.2021.1886839

Carotti S, Aquilano K, Zalfa F, et al. Lipophagy Impairment Is Associated With Disease Progression in NAFLD. Front Physiol. 2020;11:850. Published 2020 Jul 17. doi:10.3389/fphys.2020.00850

Li S, Liu P, Feng X, Wang Y, Du M, Wang J. The role and mechanism of tetramethylpyrazine for atherosclerosis in animal models: A systematic review and meta-analysis. PLoS One. 2022;17(5):e0267968. Published 2022 May 2. doi:10.1371/journal.pone.0267968

Wei Y, Liu M, Li X, Liu J, Li H. Origin of the Autophagosome Membrane in Mammals. Biomed Res Int. 2018;2018:1012789. Published 2018 Sep 24. doi:10.1155/2018/1012789

Mijaljica D, Prescott M, Devenish RJ. The intriguing life of autophagosomes. Int J Mol Sci. 2012;13(3):3618-3635. doi:10.3390/ijms13033618

He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67-93. doi:10.1146/annurev-genet-102808-114910

Chang SY, Voellinger JL, Van Ness KP, et al. Characterization of rat or human hepatocytes cultured in microphysiological systems (MPS) to identify hepatotoxicity. Toxicol In Vitro. 2017;40:170-183. doi:10.1016/j.tiv.2017.01.007

Schulze RJ, Sathyanarayan A, Mashek DG. Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1178-1187. doi:10.1016/j.bbalip.2017.06.008

Wu Y, Hirschi KK. Tissue-Resident Macrophage Development and Function. Front Cell Dev Biol. 2021;8:617879. Published 2021 Jan 8. doi:10.3389/fcell.2020.617879

Gurevich DB, Severn CE, Twomey C, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018;37(13):e97786. doi:10.15252/embj.201797786

Gould RA, Butcher JT. Isolation of valvular endothelial cells. J Vis Exp. 2010;(46):2158. Published 2010 Dec 29. doi:10.3791/2158

Hariri H, Rogers S, Ugrankar R, Liu YL, Feathers JR, Henne WM. Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep. 2018;19(1):57-72. doi:10.15252/embr.201744815

Yu J, Parkhitko AA, Henske EP. Mammalian target of rapamycin signaling and autophagy: roles in lymphangioleiomyomatosis therapy. Proc Am Thorac Soc. 2010;7(1):48-53. doi:10.1513/pats.200909-104JS

Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981-1991. doi:10.1091/mbc.e08-12-1248

Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy. 2013;9(2):124-137. doi:10.4161/auto.23323

Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903-914. doi:10.4161/auto.19653

Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5(228):ra42. Published 2012 Jun 12. doi:10.1126/scisignal.2002790

Masuda M, Yoshida-Shimizu R, Mori Y, et al. Sulforaphane induces lipophagy through the activation of AMPK-mTOR-ULK1 pathway signaling in adipocytes. J Nutr Biochem. 2022;106:109017. doi:10.1016/j.jnutbio.2022.109017

Li B, Ji Y, Yi C, et al. Rutin Inhibits Ox-LDL-Mediated Macrophage Inflammation and Foam Cell Formation by Inducing Autophagy and Modulating PI3K/ATK Signaling. Molecules. 2022;27(13):4201. Published 2022 Jun 29. doi:10.3390/molecules27134201

He A, Chen X, Tan M, et al. Acetyl-CoA Derived from Hepatic Peroxisomal β-Oxidation Inhibits Autophagy and Promotes Steatosis via mTORC1 Activation. Mol Cell. 2020;79(1):30-42.e4. doi:10.1016/j.molcel.2020.05.007

Seok S, Fu T, Choi SE, et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 2014;516(7529):108-111. doi:10.1038/nature13949

Cipriani S, Mencarelli A, Palladino G, Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 2010;51(4):771-784. doi:10.1194/jlr.M001602

Wu K, Zhao T, Hogstrand C, et al. FXR-mediated inhibition of autophagy contributes to FA-induced TG accumulation and accordingly reduces FA-induced lipotoxicity. Cell Commun Signal. 2020;18(1):47. Published 2020 Mar 20. doi:10.1186/s12964-020-0525-1

Wu K, Fan S, Zou L, et al. Molecular Events Occurring in Lipophagy and Its Regulation in Flaviviridae Infection. Front Microbiol. 2021;12:651952. Published 2021 May 21. doi:10.3389/fmicb.2021.651952

Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17(6):759-770. doi:10.1038/ncb3166

Hedman AC, Li Z, Gorisse L, Parvathaneni S, Morgan CJ, Sacks DB. IQGAP1 binds AMPK and is required for maximum AMPK activation. J Biol Chem. 2021;296:100075. doi:10.1074/jbc.RA120.016193

Li Y, Yang P, Zhao L, et al. CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J Lipid Res. 2019;60(4):844-855. doi:10.1194/jlr.M090969

Iriondo MN, Etxaniz A, Varela YR, et al. LC3 subfamily in cardiolipin-mediated mitophagy: a comparison of the LC3A, LC3B and LC3C homologs [published online ahead of print, 2022 Apr 13]. Autophagy. 2022;1-19. doi:10.1080/15548627.2022.2062111

Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129(13):2475-2481. doi:10.1242/jcs.146365

Malouf GG, Camparo P, Molinié V, et al. Transcription factor E3 and transcription factor EB renal cell carcinomas: clinical features, biological behavior and prognostic factors. J Urol. 2011;185(1):24-29. doi:10.1016/j.juro.2010.08.092

Cheng Z, White MF. Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal. 2011;14(4):649-661. doi:10.1089/ars.2010.3370

Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429-1433. doi:10.1126/science.1204592

Kloska A, Węsierska M, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. Int J Mol Sci. 2020;21(17):6113. Published 2020 Aug 25. doi:10.3390/ijms21176113

Lönnqvist F, Arner P, Nordfors L, Schalling M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat Med. 1995;1(9):950-953. doi:10.1038/nm0995-950

Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927-946.

Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Nerem RM. The pathogenesis of atherosclerosis: an overview. Clin Cardiol. 1991;14(2 Suppl 1):I1-I16. doi:10.1002/clc.4960141302

Fruchart JC, Duriez P. Données fondamentales sur l'athérosclérose [Fundamental data on atherosclerosis]. Ann Endocrinol (Paris). 2001;62(1 Pt 2):93-100.

Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709-721. doi:10.1038/nri3520

Zhang S, Peng X, Yang S, et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 2022;13(2):132. Published 2022 Feb 8. doi:10.1038/s41419-022-04593-3

Cingolani F, Czaja MJ. Regulation and Functions of Autophagic Lipolysis. Trends Endocrinol Metab. 2016;27(10):696-705. doi:10.1016/j.tem.2016.06.003

Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol. 2013;50(1):7-22. doi:10.1177/0300985812469883

Kong DH, Kim YK, Kim MR, Jang JH, Lee S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int J Mol Sci. 2018;19(4):1057. Published 2018 Apr 2. doi:10.3390/ijms19041057

Orem C, Orem A, Uydu HA, Celik S, Erdöl C, Kural BV. The effects of lipid-lowering therapy on low-density lipoprotein auto-antibodies: relationship with low-density lipoprotein oxidation and plasma total antioxidant status. Coron Artery Dis. 2002;13(1):65-71. doi:10.1097/00019501-200202000-00009

Sedighi M, Bahmani M, Asgary S, Beyranvand F, Rafieian-Kopaei M. A review of plant-based compounds and medicinal plants effective on atherosclerosis. J Res Med Sci. 2017;22:30. Published 2017 Mar 15. doi:10.4103/1735-1995.202151

Hua Y, Zhang J, Liu Q, et al. The Induction of Endothelial Autophagy and Its Role in the Development of Atherosclerosis. Front Cardiovasc Med. 2022;9:831847. Published 2022 Mar 23. doi:10.3389/fcvm.2022.831847

Carresi C, Mollace R, Macrì R, et al. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development. Antioxidants (Basel). 2021;10(3):387. Published 2021 Mar 5. doi:10.3390/antiox10030387

Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab. 2013;3(2):94-108. Published 2013 Dec 7. doi:10.1016/j.molmet.2013.11.006

Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411-429. Published 2014 Jan 9. doi:10.1016/j.redox.2013.12.016

Ahmad S, Siddiqui Z, Rehman S, et al. A Glycation Angle to Look into the Diabetic Vasculopathy: Cause and Cure. Curr Vasc Pharmacol. 2017;15(4):352-364. doi:10.2174/1570161115666170327162639

Machino T, Hashimoto S, Maruoka S, et al. Apoptosis signal-regulating kinase 1-mediated signaling pathway regulates hydrogen peroxide-induced apoptosis in human pulmonary vascular endothelial cells. Crit Care Med. 2003;31(12):2776-2781. doi:10.1097/01.CCM.0000098027.49562.29

Hughes WE, Beyer AM. Vascular autophagy in physiology and pathology. Am J Physiol Heart Circ Physiol. 2019;316(1):H183-H185. doi:10.1152/ajpheart.00707.2018

Bharath LP, Cho JM, Park SK, et al. Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler Thromb Vasc Biol. 2017;37(9):1646-1656. doi:10.1161/ATVBAHA.117.309510

Guo FX, Hu YW, Zheng L, Wang Q. Shear Stress in Autophagy and Its Possible Mechanisms in the Process of Atherosclerosis. DNA Cell Biol. 2017;36(5):335-346. doi:10.1089/dna.2017.3649

Lin L, Zhang MX, Zhang L, Zhang D, Li C, Li YL. Autophagy, Pyroptosis, and Ferroptosis: New Regulatory Mechanisms for Atherosclerosis. Front Cell Dev Biol. 2022;9:809955. Published 2022 Jan 13. doi:10.3389/fcell.2021.809955

Vindis C. Autophagy: an emerging therapeutic target in vascular diseases. Br J Pharmacol. 2015;172(9):2167-2178. doi:10.1111/bph.13052

Kim JA, Montagnani M, Chandrasekran S, Quon MJ. Role of lipotoxicity in endothelial dysfunction. Heart Fail Clin. 2012;8(4):589-607. doi:10.1016/j.hfc.2012.06.012

Farahi L, Sinha SK, Lusis AJ. Roles of Macrophages in Atherogenesis. Front Pharmacol. 2021;12:785220. Published 2021 Nov 26. doi:10.3389/fphar.2021.785220

Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165-197. doi:10.1146/annurev.immunol.021908.132620

Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res. 2019;115(12):1732-1756. doi:10.1093/cvr/cvz203

Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012;2012:282041. doi:10.1155/2012/282041

Grefhorst A, van de Peppel IP, Larsen LE, Jonker JW, Holleboom AG. The Role of Lipophagy in the Development and Treatment of Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne). 2021;11:601627. Published 2021 Feb 1. doi:10.3389/fendo.2020.601627

Wang L, Jiang Y, Song X, et al. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis. 2016;7(1):e2055. Published 2016 Jan 21. doi:10.1038/cddis.2015.416

Guerrini V, Gennaro ML. Foam Cells: One Size Doesn't Fit All. Trends Immunol. 2019;40(12):1163-1179. doi:10.1016/j.it.2019.10.002

Bennett MR, Sinha S, Owens GK. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res. 2016;118(4):692-702. doi:10.1161/CIRCRESAHA.115.306361

Tao J, Cao X, Yu B, Qu A. Vascular Stem/Progenitor Cells in Vessel Injury and Repair. Front Cardiovasc Med. 2022;9:845070. Published 2022 Feb 10. doi:10.3389/fcvm.2022.845070

Jaminon A, Reesink K, Kroon A, Schurgers L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int J Mol Sci. 2019;20(22):5694. Published 2019 Nov 14. doi:10.3390/ijms20225694

Bonetti J, Corti A, Lerouge L, Pompella A, Gaucher C. Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis-Nitro-Redox Interconnections. Antioxidants (Basel). 2021;10(4):516. Published 2021 Mar 26. doi:10.3390/antiox10040516

Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci. 2021;22(5):2529. Published 2021 Mar 3. doi:10.3390/ijms22052529

Harman JL, Jørgensen HF. The role of smooth muscle cells in plaque stability: Therapeutic targeting potential. Br J Pharmacol. 2019;176(19):3741-3753. doi:10.1111/bph.14779

Salabei JK, Hill BG. Implications of autophagy for vascular smooth muscle cell function and plasticity. Free Radic Biol Med. 2013;65:693-703. doi:10.1016/j.freeradbiomed.2013.08.003

Salabei JK, Cummins TD, Singh M, Jones SP, Bhatnagar A, Hill BG. PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem J. 2013;451(3):375-388. doi:10.1042/BJ20121344

Grootaert MO, da Costa Martins PA, Bitsch N, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015;11(11):2014-2032. doi:10.1080/15548627.2015.1096485

Swiader A, Nahapetyan H, Faccini J, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7(20):28821-28835. doi:10.18632/oncotarget.8936

Kumar R, Hazan A, Geron M, et al. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation. FASEB J. 2017;31(3):1238-1247. doi:10.1096/fj.201601132R

Taylor AM, Li F, Thimmalapura P, et al. Hyperlipemia and oxidation of LDL induce vascular smooth muscle cell growth: an effect mediated by the HLH factor Id3. J Vasc Res. 2006;43(2):123-130. doi:10.1159/000090131

Pi S, Mao L, Chen J, et al. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy. 2021;17(4):980-1000. doi:10.1080/15548627.2020.1741202

Kurdi A, De Meyer GR, Martinet W. Potential therapeutic effects of mTOR inhibition in atherosclerosis. Br J Clin Pharmacol. 2016;82(5):1267-1279. doi:10.1111/bcp.12820

Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016;112(1):429-442. doi:10.1093/cvr/cvw194

Arbogast F, Gros F. Lymphocyte Autophagy in Homeostasis, Activation, and Inflammatory Diseases [published correction appears in Front Immunol. 2018 Nov 16;9:2627]. Front Immunol. 2018;9:1801. Published 2018 Aug 6. doi:10.3389/fimmu.2018.01801

Nakahira K, Cloonan SM, Mizumura K, Choi AM, Ryter SW. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid Redox Signal. 2014;20(3):474-494. doi:10.1089/ars.2013.5373